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Morphological stability of electromigration-driven vacancy islands
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The electromigration-induced shape evolution of two-dimensional vacancy islands on a crystal surface is
studied using a continuum approach. We consider the regime where mass transport is restricted to terrace
diffusion in the interior of the island. In the limit of fast attachment (detachment) Kinetics a circle translating
at constant velocity is a stationary solution of the problem. In contrast to earlier work [O. Pierre-Louis and T.
L. Einstein, Phys. Rev. B 62, 13697 (2000)], we show that the circular solution remains linearly stable for
arbitrarily large driving forces. The numerical solution of the full nonlinear problem nevertheless reveals a
fingering instability at the trailing end of the island, which develops from finite amplitude perturbations and
eventually leads to pinch off. Relaxing the condition of instantaneous attachment (detachment) Kinetics, we
obtain noncircular elongated stationary shapes in an analytic approximation that compares favorably to the full

numerical solution.
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I. INTRODUCTION

Much of the diversity of natural shapes in the inanimate
world is the result of morphological instabilities. The para-
digmatic example is the Mullins-Sekerka instability, in which
a spherical solid nucleus in an undercooled melt forms lobes
and petals that eventually develop into a delicate dendritic
pattern [1], and its two-dimensional analogs that can be ob-
served in the growth of islands on crystal surfaces [2]. These
systems share the common mathematical structure of moving
boundary value problems, in which an interface evolves in
response to the gradient of some continuous field defined in
the spatial domains that it separates. In the context of two-
dimensional crystal surfaces, the interfaces are atomic height
steps separating different terraces, and their motion is gov-
erned by the attachment and detachment of the adsorbed at-
oms (adatoms) [3-5].

A rich variety of two-dimensional morphological insta-
bilities has been observed on the surfaces of current-carrying
crystals, where an electromigration force induces a directed
motion of adatoms [6,7]. The microscopic origin of this force
is a combination of momentum transfer from the conduction
electrons (the “wind force”) and a direct effect of the local
electric field [8]. On stepped surfaces vicinal to Si(111),
electromigration has been found to cause step bunching [9],
step meandering [10], step bending [11], and step pairing
[12] instabilities. In addition, single layer adatom islands on
silicon surfaces have been seen to drift under the influence of
electromigration [13,14].

In the present paper we focus on the morphological sta-
bility of single layer vacancy islands driven by electromigra-
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tion. We build on the work of Pierre-Louis and Einstein
(PLE) [15], who introduced a class of continuum models for
island electromigration. The different models are distin-
guished according to the dominant mechanism of mass
transport, which can be due to periphery diffusion (PD)
along the edge of the island, terrace diffusion (TD),
or two-dimensional evaporation-condensation (EC), i.e.,
attachment-detachment, kinetics. In the PD regime the dy-
namics of the island edge is local, while in the TD and EC
regimes it is coupled to the adatom concentration on the
terrace. In the TD (EC) regime diffusion is slow (fast) com-
pared to the attachment-detachment processes, as reflected in
the magnitude of the kinetic lengths

d, = DIk, (1)

defined as the ratio of the surface diffusion constant D to the
rates of adatom attachment to a step from the lower (k) or
upper (k_) terrace, respectively. The two rates generally dif-
fer, because step edge barriers suppressing attachment across
descending steps are ubiquitous on many surfaces, leading to
k. >k_[2].

As a common feature of the models of PLE, the elec-
tromigration force is taken to be of constant direction and
magnitude everywhere, which implies in particular, that it is
not affected by the presence and the shape of the island. This
is motivated by the fact that the island constitutes a small
perturbation in the morphology of the crystal, which is not
expected to substantially change the distribution of the elec-
trical current in the bulk. Detailed atomistic calculations do
in fact show that the electromigration force is modified in the
vicinity of a step [16,17], which may also be incorporated
into a continuum model [18], but this is a higher order effect
that can be neglected on the present level of description. The
situation is completely different for electromigration-driven
macroscopic voids in metallic thin films, which can be mod-
eled using a closely related two-dimensional continuum ap-
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FIG. 1. Schematic of the interior model. Adatoms detach from
the inner boundary of the vacancy island and diffuse subject to the
electromigration force F directed to the right. As a consequence, the
entire island drifts to the left at speed V.

proach [19-25]. Since the void interrupts the current flow,
the effect of the void shape on the current distribution is an
essential part of the analysis. In the following we refer to this
problem as void migration, to be distinguished from island
migration under a constant force.

Apart from the work of PLE, analytical results concerning
the morphological stability of electromigration-driven two-
dimensional shapes have been obtained only in the PD re-
gime. In the absence of crystal anisotropy the basic solution
is then a circle moving at constant velocity [19]. In the case
of island electromigration the circle becomes linearly un-
stable at a critical radius or critical driving force [20]. Be-
yond the linear instability stationary shapes that are elon-
gated in the current direction appear [26,27]. Remarkably,
the stability scenario for void migration is completely differ-
ent. Voids are linearly stable at any size [20,21], but they
become nonlinearly unstable beyond a finite threshold per-
turbation strength, which decreases with increasing radius or
driving force [22,24]. Unstable voids break up into smaller
circular voids, and noncircular stationary shapes do not exist
[25]. The increasing sensitivity to finite amplitude perturba-
tions can be linked to the increasing non-normality of the
linear eigenvalue problem, which leads to transient growth of
linear perturbations [22]. This route to nonlinear instability
has been previously described for linearly stable hydrody-
namic flows [28-30], and it will be further discussed below
in Sec. IV.

In the present paper we focus on the “interior model”
introduced by PLE. Referring to Fig. 1, we consider a single
vacancy island, which is isolated from the surrounding upper
terrace by a strong step edge barrier that prevents adatoms
from entering across the descending step (k_=0, d_=%°). Dif-
fusive motion of vacancy islands mediated by internal ter-
race diffusion has been observed experimentally on the
Ag(110) surface [31]. The mathematically equivalent process
of internal diffusion of vacancies also plays an important
role in the motion of adatom islands [32]. We will use the
terminology appropriate for adatom diffusion inside a va-
cancy island throughout the paper.

The mathematical description of the interior model leads
to a moving boundary value problem on a finite domain,
which we formulate in the next section. A key ingredient of
our analytic work is a separation ansatz for the adatom con-
centration, which allows us to determine stationary island
shapes and investigate their linear stability in a simpler and
more transparent way than in previous work [15]. The ana-
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Iytic approach is complemented by numerical simulations of
the full nonlinear and nonlocal dynamics. Specifically, in
Sec. III we compute noncircular stationary island shapes per-
turbatively in the parameter d=d, /R, where Ry is the radius
of the circle, which solves the stationary problem in the TD
limit (d,=0). Section IV is devoted to the linear stability
analysis of the circular solution for d,=0. In agreement with
PLE, we find that the eigenvalues of the linearized problem
depend only on the ratio z=R,/ &, where

_ ks

r ()

is the characteristic length scale associated with the elec-
tromigration force F. However, in contrast to PLE, who ar-
gued (on the basis of a less extensive analysis) that the circle
becomes unstable for z>0.1, we show that it in fact remains
linearly stable for all values of z. Simulations of the full
nonlinear evolution in Sec. V nevertheless reveal an instabil-
ity under finite amplitude perturbations, in which a finger
develops at the trailing end of the island and eventually leads
to a pinch off. In Sec. VI we summarize our results and
discuss their significance in the broader context of morpho-
logical stability in moving boundary value problems.

II. MODEL

Since we assume that the mass transport on the surface is
dominated by terrace diffusion, the main dynamical quantity
of interest is the adatom concentration c¢(x,y,f) on the ter-
race. By mass conservation its time evolution is governed by

0,c+€-f=0, (3)

)
j=—-DVc+ E)?c, (4)

where the currentftakes into account the contributions from
diffusion and electromigration. Since we assume the force to
be constant, electromigration appears as a drift in the direc-
tion of the electric current, denoted by the unit vector x.

The coupling to the periphery of the island is given by the
boundary conditions at the step edge. Let the subscripts +,
— denote quantities at the lower and upper terrace, respec-
tively, 7 the normal pointing from the upper to the lower
terrace, and v the normal velocity of the island boundary.
The fluxes

Jei= F (ll'ﬁ_civ) (5)

from the lower (+) and the upper (-) terrace, respectively,
towards the step are then assumed to be proportional to the
deviation from equilibrium [5], i.e.,

jt = ki(ci - Ceq 5 (6)

with k,,k_ denoting the attachment rates from the lower and
upper terrace, respectively. Here the equilibrium density cq
is given by the linearized Gibbs-Thomson relation
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Coq=Co(1+Tk), T'=a’5lkyT, (7)

where ¥ denotes the (isotropic) step stiffness, a the lattice
constant, and « the curvature of the terrace boundary. The
validity of Eq. (7) requires the capillary length I" to be small
compared to the radius of curvature of the island boundary.
Defining the kinetic lengths by Eq. (1), we note that in the
terrace diffusion limit (TD), where the attachment-
detachment becomes instantaneous (k,—o%, d,—0), the
boundary conditions (6) reduce to

€= Ceq- (8)

Finally, by mass conservation, the normal velocity v of the
boundary is

v=a’(j,+j.). 9)

We neglect periphery diffusion, since we are concerned here
with the kinetic regime where terrace diffusion is the domi-
nant mass transport mechanism. For the interior model k_
=0, which implies j_=0, and Eq. (8) applies on the interior
(lower) terrace in the TD limit.

In the following, it is assumed that the electric current is
in the x direction, i.e., £=(1,0). Moreover, for analytic cal-
culations the quasistatic approximation is frequently used,
which amounts to setting d,c=0 in the diffusion equation (3),
which then reduces to

Ac—&'9.c=0, (10)

and omitting the term proportional to v in Eq. (5), which
arises from the sweeping of adatoms by the moving step. For
our purposes, the general solution of Eq. (10) is most conve-
niently expressed in polar coordinates. To arrive at a suitable
representation, we first eliminate the drift term breaking the
rotational symmetry of Eq. (10) via the ansatz

o =ol 133

which leads to the Helmholtz equation Af=f. Separation of
the latter equation yields a harmonic angular dependence and
a modified Bessel function of imaginary argument /, for the
radial part. The general solution of Eq. (10) is then a super-
position of the form

c(r,0) = exp(é cos 9) 1(r,0), (11)
£(r,0) = Ew énln(é)exp(in 0). (12)

where the unknown coefficients {¢,} are to be determined by
the boundary conditions (6).

We further note that, in the quasistatic approximation, the
total area A of the island is strictly conserved by the dynam-
ics. For the interior model one computes
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d - .
—A:f vds:—azf j+~nds:—a2f V-j,dA=0,
dr a0 a0 Q

using the divergence theorem, where () denotes the interior
domain and d€) its boundary. The last integral vanishes in the
quasistatic approximation. This means that the mass ex-
change between the island boundary (the bulk) and the ada-
tom concentration inside is always balanced. In this sense the
diffusion field merely mediates the mass transport from one
part of the boundary to another.

II1. STEADY STATES

For the interior model in the TD limit (d,=0, d_=x),
circular islands are steady states. More precisely, an island
with radius R, constant adatom concentration

0 r
C=Cp=Ceq l—R—O s

and drifting with constant velocity

- D a2c0
V=——
E1-d’c

X (13)

is a solution of Eqs. (3)-(9); the factor (1-a’cy)™" is a cor-
rection to the quasistatic approximation, which requires
a2c0<1. However, if the attachment is not instantaneous
(d,>0), the circle is no longer stationary. As was shown in
[15], an expansion of the interior model to second order in
z=Ry/ & leads to noncircular steady states being elongated
perpendicular to the field direction.

In the following we will investigate the existence of
steady states in the regime where z~ 1. To this end, we ex-
pand the interior model in the small parameter

5 = d+/ RO
and look for first order perturbations of the steady state, i.e.,

R(6) =Ry + p(6) + O(&),

c(r,0)=co+c,+O(8).

Applying the quasistatic approximation, this leads to the fol-
lowing linear system for ¢, and p:

Acy—€'9,¢,=0, (14)
1 0 r 17
c,—d,&'¢cycos 0=ceq]?(p+p), (15)
0

0=dp=-(v, —&~ﬁ)=a2D<%£-ﬁo—€cl ~r70>, (16)

where 71y=(—cos 6,sin 6) is the normal of the circular steady
state.

With the ansatz (11) for ¢, the steady state condition (16)
is equivalent to

046210-3



HAURBER et al.

1
0=4d,f- 2—gfcos 0.

Next, using Eq. (12) and property (A2) of the Bessel func-
tions [, leads to the following simple recursion relation for
the coefficients ¢,,:

él\n—lln—l + CAn+11n+1 = én(ln—l + In+1)? (17)

where we have used the notation 1,,=1,,(R,/2£). For a solu-
tion that is symmetric under reflection at the x axis (field
direction) we have ¢,=¢_,, which together with Eq. (17) im-
plies that ¢, =¢,. Therefore any symmetric solution of Egs.
(14) and (16) is of the form

E_w 1,1( 2—; ) expl(in)

. r
ci(r,0) =¢yexp 2—5 cos 0

,
=¢ exp(— cos 0),
3

where in the second identity we have used Eq. (A4). Now the
boundary condition (15) is used to fix the constant ¢, as
follows: First note that Eq. (15) describes a driven harmonic
oscillator in “time” 6, with the left-hand side being the driv-
ing force. Next recall that a 277 periodic solution p(6) of this
oscillator exists provided the driving force is 2m-periodic
with vanishing n=1 Fourier mode, where the latter condition
means that the oscillator is not in resonance with the driving
force. Using the Fourier expansion of ¢, [see Eq. (A4)] this
determines the constant ¢, to be

0 r
Ceq 1-—
D S (( VA ()

Co= , K= .
2¢0(2) 3
Thus, the steady state adatom concentration is given by
r
0
41-5)
0 r
c(r,®=di———— exp( )

261,(2) PR

Finally, the symmetric steady state shape [p(6)=p(-0)] is
obtained as the solution of the ordinary differential equation
(15) as

p(0) = po(z) + X, p,(z)cos nb

n=2

r /(i1 o 1)
Rooz———| =1, D 0].
00z @ (20(z)+n§21_nzcosn)

(18)

The relative perturbation p/R, is expressed as a function of
the dimensionless parameters d=d. /R, z=Ry/&, and T'/R,
which characterize the deviation from the TD limit, the
strength of the electromigration force, and the capillary ef-
fects, respectively.

The constant term p, in Eq. (18) describes a uniform di-
lation of the circle. Since I'/Ry<< 1, py>0, while p,~,<0. In
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FIG. 2. First-order perturbations of the circular steady state.
Top: Steady state shape for different values of d=d,/Ry<<1 with
fixed z=Ry/é=5 and I'/Ry=0.05. Bottom: Different values of z
with fixed 6z=0.05. In both cases the perturbed shape Ry+p—p, is
depicted, i.e., the dilation mode has been subtracted.

particular, the leading order deformation with n=2 corre-
sponds to an elongation perpendicular to the drift direction.
This is illustrated in Fig. 2, where the dilation mode has been
subtracted. Moreover, with increasing electromigration force
(increasing z), the shapes start to become concave on the
trailing side (recall that the islands are moving to the left).
As has been pointed out above in Sec. II, the full (nonlin-
ear) evolution is area conserving in the quasistatic limit.
Since the dilation mode p, is of the same order as the elon-
gation mode p,, this property is generally violated by the
first-order perturbation in 8. This suggests that the perturba-
tive regime may be restricted to rather small elongations. To
obtain the steady states of the full nonlinear model, numeri-
cal simulations of the time-dependent equations (3)—(9) have
been performed. An adaptive finite element method is used,
where the free boundary problem is discretized semi-
implicitly using an operator splitting approach and two inde-
pendent numerical grids for the adatom density ¢ and for the
island boundary, respectively. For the boundary evolution, a
front tracking method is applied (for details see [33]).
Starting with a circular shape, the void elongates until it
reaches a steady state. A typical example of the time evolu-
tion is depicted in Fig. 3. Here the parameters are 6=0.1, z
=5, which, as will be seen below, is already far away from
the perturbative regime. We do not observe any concave
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FIG. 3. Simulation of the full nonlinear evolution of a circular
vacancy island towards a steady state. For this example, 6=0.1 and
z=5, which is well beyond the regime of validity of the first-order
perturbation theory. The void is moving from right to left and the
snapshots are taken at =0, t=1.5, r=5, t=50. The contours at later
times are moved back to the right for better visibility. Space is
measured in units of the radius R, of the initial shape and time in
units fo=Ry/ |X7', where V is the drift velocity of a circular island as

given in Eq. (13). The simulation parameters are Ry=100a, azcgq
=105, T'/Ry=0.05.

parts at the back side of the void as opposed to the perturba-
tive steady state (see Fig. 2). This turns out to be true for all
examples that we investigated. We also checked that the final
steady state does not depend on the initial shape. For ex-
ample, starting with a “beanlike” shape being the steady state
shape as obtained from the perturbation theory also leads to
the same convex steady state. Moreover, we have not seen
any breakup in the simulations even for cases where 6~ 1. In
all cases, a steady state shape similar to the one depicted in
Fig. 3 is approached, where the deformation increases with
increasing & and where the curvature at the back side (right
side) approaches zero. In Fig. 4 the steady states as obtained
from the nonlinear evolution are depicted for different values
of 8. By comparing with Fig. 2 (left) it is clear that the
perturbative regime is limited to rather small values of o,
since already for §=0.01 the perturbative (nonconvex) and
the nonlinear (convex) steady state shapes differ consider-
ably.

In Fig. 5 we have investigated this quantitatively by com-
paring the deformation A,

FIG. 4. Steady state shape as approached by the nonlinear evo-
lution for different values of 6=d,/Ry<<1 with fixed z=Ry/&=5
and I'/Ry=0.05.
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FIG. 5. Deformation A of the steady state shape versus relative
kinetic length 6=d, /R, as obtained from perturbation theory and
from the full model.

A =[p(7/2) + p(= 7/2) = p(0) = p(7) J/2R,

for the steady state obtained by the perturbation theory, i.e.,
given in Eq. (18), and for the steady state as approached by
simulations of the full nonlinear dynamics. The first-order
perturbation theory is seen to be quantitatively accurate only
for 6<<0.01.

IV. LINEAR STABILITY ANALYSIS

Next we perform a linear stability analysis for the circular
steady state of the interior model in the TD limit. Thus we
are looking for small perturbations of the form

p(6,1) = p(6,0)exp(iwt),

ci(r,6,t) =c,(r,0,0)exp(iwt).

As in Egs. (14)—(16) we obtain—using the quasistatic ap-
proximation for ¢;—the following linearized system for c;
and p:

ACI—%—](?XC'l:O, (19)
r
c = cgqp(p +p"), (20)
0
3N P
dp=a D(Ex-nO—Vcl-n()). (21)

In view of Eq. (11) we make the following ansatz:

p(6,0) = exp(% cos 0)2 p,exp(inf), z= R (22)

20
n g

Thus, the perturbation p(6,0) is written as a series expansion
in the functions exp(% cos H)exp(ine), instead of the usual
Fourier modes. This choice has the advantage of simplifying
the subsequent calculation. In particular, it will lead to a
linear system, where each matrix row (column) has only a
small number of nonzero entries. However, as we will dis-
cuss later, the nonorthogonality of the ansatz functions in-
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creases the non-normality of the matrix. Equation (21) now
takes the form

1
iw Y, p,exp(in) = azD(ﬁ,f— 2_§f cos 0) )

Using Egs. (12), (A2), and matching coefficients we obtain
2

. aD_, . .

lwp, = 4_§[Cn(ln—l + In+1) - Cn—lln—l - Cn+lln+l]’ (23)
where here and in the following we use the notation I,
=I,1(§). We will finally use the linearized boundary condition
(20) to express the coefficients ¢, in Eq. (23) in terms of the
p,s. Inserting the ansatz (11) for ¢, and Eq. (22) for p into
Eq. (20) yields

. T 2
f(Ry,0) = eq - <1+Z§(1—00520)

O

—Ecos 60—
2

which leads to [using (12) for the left-hand side]

2 2
. Z o I ( Z ) Z
1= 1+=— — (Pper + P
Cp n(2> eqR(2)|: 8 np, 16(pn+2 Pn 2)

inz sin 6 — nz)pn exp(in6),

- i[(zn - 1)pn—1 - (21’1 + 1)pn+l]:| . (24)

Inserting Eq. (24) into Eq. (23) leads after some tedious but
straightforward calculations to the following eigenvalue
problem for the coefficients {p,} and w:

2 2
Z Z Z
\p, = |:5<1 +§—n2>C,,+§}pn

3
+(—n(n+2)+(2n+1) C,- 64>pn+1
Z 2 3
+|-nn-2)+(-2n+1)—-C,—
(4<n )+ =2+ DG, 64);)”1
2 3
(E(2n+3)+32 )Pn+2
2 23
—@2n-3)-—=C
+(16( n ) 32 )pn 2
23
+ a(pn+3 + pn—3)’ (25)
with
N = iR} _In+1+1n—1:£+2_n

0 2) ) I, z°

The right-hand side of Eq. (25) represents the linearized time

evolution of the island as a (infinite) matrix A acting on the
coefficients p,,. In real space it corresponds to an integrodif-
ferential operator, which is essentially nonlocal. Remarkably,
the matrix depends on the system parameters only through
the dimensionless electromigration force z=R,/&. In particu-
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lar, the capillary length I affects the time scale of the linear
evolution, but not the stability of specific perturbations [15].
For I'— 0, all eigenfrequencies w, vanish, which implies that
all perturbations become marginal. Indeed, it is easy to check
that in the TD limit, for I'=0, any island shape translates
rigidly at constant velocity under Egs. (3)—(9).

The matrix A exhibits a symmetry, which originates from
the invariance of the system under reflection at the x axis
(field direction). In terms of the coefficients p,, this reflection
is expressed as p,— p_,, and one readily verifies that this
does leave Eq. (25) unchanged. Accordingly, the eigenspace
splits into two invariant subspaces with symmetric and anti-
symmetric eigenmodes characterized by

On = P-n> symmetric,

Pn="—Pns antisymmetric.

In both cases the eigenmodes are fully determined by only
half of the coefficients (e.g., those with positive index),
which allows us to reduce Eq. (25) to a semi-infinite system.
By truncating it towards large n (cutoff towards small wave-
lengths) we arrive at a finite linear system, which we solve
numerically.

Before we present the numerical results, we discuss trans-
lations and dilations, which are perturbations related to the
symmetry properties of the system. Symmetry under transla-
tions in the horizontal (x) and vertical (y) direction leads to
two zero eigenmodes 7, 7,—the infinitesimal horizontal and
vertical translations—given by

T,(0) =cos(6), T,(0)=sin(h).

Indeed, inserting p=7, or p=7, into the linearized boundary
condition (20) leads to ¢;=0 and therefore Eq. (21) yields
d,p=0. The horizontal translation 7, belongs to the symmet-
ric eigenmodes, while the vertical translation 7; belongs to
the antisymmetric class. Next we consider a dilation D, i.e.,
a constant initial perturbation

D(O)=1.

Inserting p(6)=D(6H)=1 into the boundary condition (20)
yields
_Cel’
c1= 5 >
Ry

which reflects the fact that one passes from one stationary
solution to another by increasing the radius of the island and
the concentration inside the island by a constant value. How-
ever, a dilation is not a zero eigenmode: Since we consider
perturbations of a circular steady state, which has a steady
state drift velocity depending on the radius, two circles with
different radius are drifting apart. This leads to a linear in-
crease of the perturbation. From Eq. (21), an initial perturba-
tion p(#,0)=1 has to grow according to

2.0
I'D &ATD
dp= A Ceqn & COS(@) _CI_T(e)
2
Ryé Rié

In that sense a dilation D generates a translation, and D is a
generalized eigenmode with eigenvalue zero according to
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FIG. 6. (Color online) Spectrum of the linearized theory as ob-
tained by the numerical solution of the eigenvalue problem (25).
Depicted are the eleven largest eigenvalues as a function of the
dimensionless electromigration force z=R,/§. Eigenvalues of sym-
metric modes are red (black), eigenvalues of antisymmetric modes
are blue (gray). Note that the eigenvalue zero is threefold degener-
ate. All negative eigenvalues come in pairs, consisting of a symmet-
ric and an antisymmetric mode, which become degenerate at z=0.
For the fluctuations appearing around z=30 see the discussion at the
end of Sec. IV.

A2D~A’Z;=O. Thus (restricting to the symmetric case) the
eigenvalue zero is twofold degenerate, and has one (proper)

eigenvector. Therefore, the matrix A cannot be diagonalized
completely but contains a 2 X 2 Jordan block corresponding
to the invariant subspace spanned by D and 7. Apart from
that, the dilation does not play a role, because the time evo-
lution preserves the area and we can therefore always restrict
ourselves to perturbations that do not contain dilations.

The numerically determined spectrum is presented in Fig.
6. Here the largest eigenvalues for 0=z=30 are depicted.
The spectrum is purely real and apart from the predicted
threefold degenerate zero eigenvalue it is strictly negative.
For z=0 (no electromigration force), the right-hand side of
Eq. (25) becomes diagonal,

Ap, = |n|(n2 - l)pn’

which allows one to directly read off the eigenvalues A,
=|n|(n*>~1). Each eigenvalue \, is twofold degenerate with
eigenmodes given by the Fourier modes cos(n6), sin(n6).
Since no field breaks the rotational symmetry, the symmetric
and antisymmetric modes cos(n6), sin(n6) are connected by
a rotation by /2 and belong to the same eigenvalue \,. In
the presence of an electric current, i.e., z>0, the rotational
symmetry is broken and the degeneracy is removed, i.e., the
eigenvalues split. Moreover, increasing values of z lead to
decreasing eigenvalues, i.e., larger islands or islands in the
presence of a stronger field relax faster to the circular shape
(as compared to the case without drift). For large values of z
the eigenvalue problem becomes numerically difficult to
solve, leading to a noisy spectrum in Fig. 6 for values of z
~30. This will be discussed in more detail below.

We now turn to the eigenmodes of the linearized time
evolution. Figures 7 and 8 show some examples of symmet-
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- -1t/2 0 /2 T

polar angle 6

FIG. 7. Second, fourth, and sixth symmetric eigenmode as a
function of the angle 6 (z=10). 6= is the drift direction. The
modes are normalized with respect to the L% norm.

ric and antisymmetric eigenmodes with small index n for z
=10. All of them reveal a typical undulated shape, where the
number of nodes increases with the index and the amplitude
is largest towards #=0. Thus the modulation is more pro-
nounced at the back side of the island (with respect to the
drift motion) and, as shown in Fig. 9, this localization gets
stronger with increasing z. This is a signature of the fact that
the eigenvectors become more and more parallel (see below).
The increasing localization of the eigenmodes at the back
side of the island may be traced back to the convective,
electromigration-induced flux in the adatom diffusion equa-
tion (3), which leads to the factor exp(Z cos 6) in Eq. (22).
For large values of z, this factor strongly suppresses all con-
tributions for values of 6, which are not close to 6=0. In
particular, a perturbation that is front-back symmetric has to
be a linear combination of many different eigenmodes. In
that case, the eigenmodes with large index n will decay very
fast leading to a shape being close to the steady state circular
shape at the front side, while still having a large buckle at the
back side.

This behavior will be investigated in more detail in the
next section, when we consider the fully nonlinear evolution.
For large values of z this will finally lead to a fingering
instability at the back side of the island.

00
00 e

FIG. 8. Second, third, and fourth eigenmode superimposed on a
circle (gray background) for z=10. Top (bottom) row shows sym-
metric (antisymmetric) modes.
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amplitude

- -n/2 0 n/2 b
polar angle 6

FIG. 9. Symmetric eigenmode n=3 for different values of z. The
asymmetry with respect to the front (A=) and back side (6=0)
increases with an increasing value of z. The modes are normalized
with respect to the L? norm.

Before turning to the nonlinear evolution, we comment on
some observations connected with non-normal eigenvalue

problems. The matrix A in Eq. (25) is highly non-normal for
large values of z, which leads to a strong sensitivity of the
spectrum with respect to small perturbations of the matrix
entries. Small changes of the entries of the matrix may lead
to structurally completely different spectra, a feature which
can be consistently described within the theory of pseu-
dospectra [30]. The degree of non-normality depends on the
choice of the basis. In our case the basis is not orthogonal
(with respect to the usual L? scalar product) and therefore,
although convenient for the analytical part, can give a dis-
torted picture of the underlying geometry. We therefore
checked the results by transforming the system (25) to the
Fourier basis. Here the non-normality is much less pro-
nounced and we obtained the same spectrum as depicted in
Fig. 6. In both cases, we have not been able to obtain the
spectrum numerically for values z>30 since, as can be seen
from Fig. 6 the lines start to become noisy between z=25
and 30. The fluctuations are getting stronger very quickly,
making it impossible to determine the spectrum reliably.

A closer examination reveals that the condition numbers
for the eigenvalues grow exponentially with z and therefore
the accuracy of the results gets lost very quickly at some
point. This is again a consequence of the non-normality of
the problem. The condition number of a given eigenvalue is
large when the corresponding left and right eigenvectors are
almost orthogonal [34]. This is intimately connected with the
nonorthogonality between different (right) eigenvectors. In
our case the eigenvectors become almost parallel for large
values of z. Even a slight perturbation of the matrix entries
will destroy this and improve the condition numbers dramati-
cally, of course, by changing the spectrum beyond recogni-
tion.

Finally, we note that non-normality has also been dis-
cussed [22,28-30] as a mechanism causing a transient
growth of small perturbations even in the case of a linearly
stable system. This transient amplification can be large
enough to drive the system out of the linear regime, this way
leading to an instability. We thoroughly investigated the tran-
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FIG. 10. Nonlinear dynamics in the interior model with strong
electromigration force (z=25). The initial shape is an ellipse with
aspect ratio 1.2. A fingering instability appears at the trailing end,
which leads to a pinch off. The contours are shifted upwards for
better visibility and also shifted to the right with Ax=¢| &, where V
is the drift velocity of a circular island [see Eq. (13)]. Space is
measured in units of the lattice spacing a and time in units 7,
=R,/ |Y7| The simulation parameters are Ry=100aq, azcng 1073,
I'/Ry=0.02. The breaking of the up-down symmetry in the right
column is due to numerical noise.

sient behavior of the linearized system and found that this
scenario does not apply to our case.

V. NONLINEAR EVOLUTION

To further investigate the nonlinear evolution, we have
performed numerical simulations of Egs. (3)—(9) using an
adaptive finite element method, as described in Sec. I1I. We
note that adaptive mesh refinement during the time evolution
in regions with high curvature turned out to be crucial for
accurate simulations in the case when small fingers appear in
the shape.

We probe the nonlinear dynamics with a very strong elec-
tromigration force, i.e., choosing z=R,/&=25. In Fig. 10 a
simulation of a vacancy island (interior model) in the TD
regime is depicted. Here an ellipse with aspect ratio 1.2 has
been taken as the initial shape. We observe a fingering insta-
bility at the back side of the vacancy island, which finally
leads to a pinch off. Note that this behavior has not been
predicted by the linear stability theory.

To gain a better understanding of the nonlinear dynamics,
the initial evolution of an ellipsoidal island has been inves-
tigated in more detail. For this special geometry, one may use
elliptic coordinates and an expansion of the adatom concen-
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0.12

0.08

0.04

normal velocity (moving frame)

normal angle 6

FIG. 11. Normal velocity of an ellipsoidal vacancy island (elon-
gated in the horizontal direction) as a function of the normal angle
in the center of mass system, i.e., after subtracting the drift velocity
of the island. The normal points inwards, i.e., a positive velocity
corresponds to local shrinking, and the angle 6= corresponds to
the drift direction. The normal velocity taken from the numerical
simulations by averaging over the first 1000 time steps is in very
good agreement with the results obtained by evaluating the analytic
solution using elliptic coordinates.

tration in terms of Mathieu functions to arrive at an analytic
expression for the normal velocity [see Appendix B, Eg.
(B2)]. However, as it turned out, a reliable evaluation of the
series expansion is possible only for moderate values of z
=5 and aspect ratios =2. For parameters in this regime, the
normal velocity of an ellipsoidal vacancy island—elongated
in the horizontal direction—in the center of mass system,
i.e., after subtracting the (fairly large) drift velocity, is com-
pared with the corresponding results of the finite element
simulation in Fig. 11.

The two solutions are in very good agreement. Moreover,
one realizes that the dynamics is fastest at the front part of
the island and tends to relax the front half of the ellipse
towards a circle, since the boundary moves inwards at 6=
(front) but outwards in nearby regions with 6=~ w+w/4.
Since the evolution at the back half of the island is slower
and always inwards, we expect the dynamics to lead to an
egglike shape, which is verified in the simulations (see Fig.
12). Moreover, the asymmetry of the dynamics becomes
more pronounced with increasing values of z. We expect this
to be a possible reason for the onset of a fingering instability,
once a critical value of the curvature at the back end is
reached.

To roughly locate the threshold for the onset of the insta-
bility we systematically varied the electromigration strength
z and the amplitude of the initial perturbation given as the
aspect ratio of the initially horizontally elongated circle. The
results of the simulations are presented in Fig. 13. As can be
seen, the instability sets in around z~ 10.

Although we are so far lacking a satisfactory analytic un-
derstanding of the underlying mechanism, we would like to
present some intuitive reasoning for the onset of an instabil-
ity at large values of z. First recall that the mass flux at the
boundary of the vacancy island in the normal direction 7
(pointing inwards) is the sum of the diffusive flux
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FIG. 12. Numerical simulation of the evolution of an ellipsoidal
vacancy island with aspect ratio 2.0 and area WR%. The upper figure
depicts the initial stage of the evolution: the left (right) asymmetry
increases with an increasing value of z=R/ &, leading to the forma-
tion of an egglike shape. Bottom: For large values of z, the asym-
metric evolution leads to a fingering instability at the back side of
the island. Space is measured in units of the lattice spacing a and

time in units 7g=R,/ \‘7, where V is the drift velocity of a circular
island as given in Eq. (13) for the case z=10. The simulation pa-
rameters are Ry=100a, azcng 1073, I'/R(=0.05.

j,=—DVe-ii,
and the flux caused by electromigration,

. D .

Je= Eceqn - X,
where, as usual, X denotes the unit vector in the x direction.
Next we consider the two simplified cases of (a) j,=0, i.e.,
no electric field and (b) j,;=0, i.e., no diffusion, to argue that
Ja 18 stabilizing while j, is destabilizing.

(a) No electric field. An outward bump of the boundary
leads to a local maximum of the curvature and therefore a
local minimum of the adatom density c,, along the boundary.
Due to the maximum principle, this will also be a local mini-
mum of ¢ inside the island, leading to a diffusive flux to-
wards the boundary, i.e., the bump will be filled. Thus the
diffusive flux is stabilizing.

(b) No diffusion. Consider an outward bump of the bound-
ary at the trailing (back) island edge. As in case (a), this leads
to an increased curvature and therefore a decreased adatom
density c.q as compared to the front side. The flux j, caused
by electromigration is proportional to ¢, and therefore de-
creased at the back side, i.e., this part of the boundary is now
drifting more slowly than the center of mass and the bump is
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growing. Thus the electromigration flux destabilizes the trail-
ing edge and stabilizes the leading edge of the island.

Finally, consider the general case of an outward bump of
the trailing boundary in the presence of diffusion and elec-
tromigration. Fixing all parameters, except the strength of
the electric field &', the diffusive flux depends essentially on
the geometry of the bump, whereas the decrease of j, is
proportional to &!. Thus we may expect that the bump will
grow if the electric field is large enough.

The argument also elucidates the role of the capillarity
parameter ' in this problem, which is mainly to translate
variations of the boundary curvature into variations of the
adatom concentration in the interior of the island. The latter
in turn underlies both the stabilizing effect of the diffusive
current and the destabilizing effect of electromigration. In
contrast to the instabilities in the PD regime, which can be
described in terms of a competition between capillarity and
electromigration [22,26,27], here capillarity plays a largely
neutral part, which explains (in hindsight) why the linear
stability properties are independent of I" (see Sec. IV).

VI. CONCLUSIONS

In this paper, we have presented a detailed study of a
continuum model for the electromigration-driven shape evo-
lution of single-layer vacancy islands mediated by internal
terrace diffusion. Significant shape deformations, such as the
elongation transverse to the field direction described in Sec.
II or the pinch-off instability discussed in Sec. V, were
found to require dimensionless electromigration forces z
=R,/ & significantly larger than unity. Unfortunately, this im-
plies that these phenomena will be difficult to realize experi-
mentally, at least for the surfaces commonly used in this
context. To give an example, the maximal electromigration
bias that can be achieved on the Cu(100) surface has been
estimated [35] to be on the order of Ep,,~107 eV for a
diffusion hop between nearest neighbor sites, corresponding
to a characteristic length scale £/a=kyT/Ep;,~2.5X 10°. An
island with z=10 would thus contain about 2 X 10° atoms,
which is four orders of magnitude larger than the size at
which strong shape deformations and electromigration-
induced oscillatory dynamics have been predicted in the PD
regime [36].

From the broader perspective of the theory of moving
boundary value problems, our results are of interest because
they add another example to the list of cases in which the
standard tool of linear stability analysis fails to correctly pre-
dict the stability properties of the full nonlinear dynamics.
The behavior of the interior model in the TD limit is similar
in many respects to the void migration problem in the PD
regime, which was studied in [22,24]. In both cases the cir-
cular solution is linearly stable for arbitrary values of the
electromigration force, but a nonlinear instability occurs
when the system is subjected to finite amplitude perturba-
tions, and the threshold for the nonlinear instability decreases
with increasing force. Moreover, as in the case of void mi-
gration, a distorted island either relaxes back to the circular
shape or evolves towards pinch off. This suggests (as has
been proven for voids [25]) that no noncircular stationary
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FIG. 13. Threshold for the onset of the instability: Simulations
for different values of z=R,/§ and aspect ratios of the initial ellip-
soid, where the elongation is in field direction, have been per-
formed. The instability sets in at z=9. For z=11 also the smallest
aspect ratio leads to an instability, i.e., a fingering at the back side of
the island.

states exist. However, in contrast to the void migration prob-
lem, in the present study we found no evidence for transient
amplification of linear perturbations related to the non-
normality of the eigenvalue problem.

In this context it is worth mentioning the problem of two-
dimensional ionization fronts, which shares some of the fea-
tures of both void and island migration [37]. In this system a
closed curve representing the ionized region (a “streamer”)
evolves in response to a Laplacian potential in the exterior
domain. As in the void migration problem, a constant poten-
tial gradient far away from the streamer represents the driv-
ing electric field. However, the boundary condition at the
front is similar to that employed in the present work [Egs.
(5), (6), and (9)] with c.,=const., i.e., I'=0, and the kinetic
length corresponds to the width of the ionization front.
Again, circles translating at constant velocity are solutions of
the problem. In the special case where the kinetic length
equals the radius of the streamer the linearized dynamics can
be solved exactly, and it is found that the circle is always
stable. Standard linear stability analysis nevertheless fails,
because smooth initial perturbations do not decay exponen-
tially [38]. Further exploration of the relationship between
these three boundary value problems seems like a promising
direction for future research.
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APPENDIX A: BESSEL FUNCTIONS

We summarize some properties of the modified Bessel
functions of imaginary argument /,. For integer n the func-
tions [, are symmetric with respect to the index
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1, (r)=1,(r). (A1)
The derivative is
d 1
_In(r) = _[In—l(r) + In+1(r)]~ (Az)
dr 2
There is the recursion relation
rIn—l(r)_r1n+1(r):2nln(r)s (A3)
and the generating function is
exp(r cos 6) = > I,(r)exp(in6). (A4)

n=—o0

APPENDIX B: NORMAL VELOCITY
OF AN ELLIPSOIDAL ISLAND

To calculate the concentration profile inside an ellipsoidal
island, we introduce elliptic coordinates

x = a cosh(u)cos(w),

y = a sinh(u)sin(w),

where u and w are the radial and angular coordinates, respec-
tively. The line u=uy=const. is an ellipse with aspect ratio
tanh(u,) and the parameter @ determines the size of this el-
lipse. Curvature and normal vector are

1
Kk =— —5 cosh(ug)sinh(u),
ag

. L(sinh(uo)cos(w) )
"= \"E cosh(ug)sin(w) /”

with g=cosh?(uy)—cos*(w). The Helmholtz equation now
reads
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(ﬂi + afv)f: o?[sinh?(u) + sin*(w)1f
and separation f(u,w)=f,(u)f,,(w) leads to
f:,v - a2 Sinz(w)fw = )\fw7

-+ o sinh®(u)f, = \f,.

The solutions of the two equations are related by f,,(ix)
=f,(x). Requiring periodicity of f,, determines a discrete set
of values for the separation parameter A. The corresponding
solutions are the Mathieu functions of the first kind ce, and
se, [39]. Since the ellipse is symmetric with respect to the
field direction we only need the ce,, which are even func-
tions of the angular variable w. The general solution is then

c(u,w) = exp(i cosh(u)cos(w)) > b,ce,(w)ce,(iu).

n=0
(B1)

The coefficients b, are determined by the boundary condition

(8). The Mathieu functions are orthogonal and normalized

according to [37ce?(x)dx= . Thus, the b, can be found in a

way similar to Fourier coefficients via the integrals

0 2
b, = A‘—f cen(w)exp<— = COSh(Mo)COS(W))
WCCII(ZMO) 0 2§

X(1-Tk)dw.

These integrals are solved numerically. Finally, using the
general solution (B1) to calculate the flux to the boundary,
the normal velocity v of the island edge is obtained as

2
v= g exp(g cosh(uo)cos(w)> > b,ce,(w)
Vg 2¢

X (i Im[ce, (iug)] + é sinh(uo)cos(w)ce,,(iuo)) )

(B2)
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